
Chapter 10

Numerical Solution Methods for Engineering Analysis

(Chapter 10 Numerical solution methods)
© Tai-Ran Hsu

* Based on the textbook on “Applied Engineering
Analysis”, by Tai-Ran Hsu, published by John
Wiley & Sons, 2018 (ISBN 97811119071204)

Applied Engineering Analysis
- slides for class teaching*

1

2

Chapter Learning Objectives (p.339)

● Learn the alternative ways of using numerical methods to solve nonlinear equations,
perform integrations, and solve differential equations.

● Learn the principles of various numerical techniques for solving nonlinear equations,
performing integrations, and solving differential equations by the Runge-Kutta
methods.

● Learn the fact that numerical methods offer approximate but credible accurate
solutions to the problems that are not readily or possibly solved by closed-form
solution methods.

● Learn the fact that numerical solutions are available to the users only at the preset
solution points, and the accuracy of the solution is largely depending on the size of
the increments of the variable selected for the solutions.

● Become familiar with the value of commercially available numerical solution software
packages such as Mathematica and MatLAB.

3

10.1 Introduction

Numerical methods are techniques by which the mathematical problems involved with the
engineering analysis cannot readily or possibly be solved by analytical methods such as
those presented in previous chapters of this book.

We will learn from this chapter on the use of some of these numerical methods that will
not only enable engineers to solve many mathematical problems, but they will also
allow engineers to minimize the needs for the many hypotheses and idealization of the
conditions, as stipulated in Section 1.4 (p.8) for engineering analysis.

This chapter will cover the principles of commonly used numerical techniques for:
(1) the solution of nonlinear polynomial and transcendental equations,
(2) Integration with integrals that involve complex forms of functions, and
(3) the solution of differential equations by selected finite difference methods,
(4) overviews of two popular commercial software packages called Mathematica and

MatLAB.

4

10.2 Engineering Analysis with Numerical Solutions (p.340)

There are a number of unique characteristics of numerical solution methods in engineering
analysis. Following are just a few obvious ones:
1) Numerical solutions are available only at selected (discrete) solution points, but not at all points

covered by the functions as in the case with analytical solution methods.

2) Numerical methods are essentially “trail-and-error” processes. Typically, users need to
estimate an initial solution with selected increment of the variable to which the intended
solution will cover. Unstable numerical solutions may result from improper selection of
step sizes (the incremental steps) with solutions either in the form of “wild oscillation”
or becoming unbounded in the trend of values.

3) Most numerical solution methods results in errors in the solutions. There are two types of errors that
are inherent with numerical solutions:
(a) Truncation errors – Because of the approximate nature of numerical solutions, they often consists

of lower order terms and higher order terms. The latter terms are often dropped in the
computations for the sake of computational efficiency, resulting in error in the solution, and

(b) Round-off errors –Most digital computers handle either numbers with 7 decimal points, or 14
decimal points in numerical solutions. In the case of 32-bit computer with double precision (i.e. 14
decimal points length numbers), any number after the 14th decimal point will be dropped. This may
not sound like a big deal, but if a huge number of operations are involved in the computation, such
error can accumulate and result in significant error in the end results.

Both these errors are of accumulative natures. Consequently, errors in numerical solution may
grow to be significant with solutions obtained after many step with the set increments.

5

10.3 Solution of Nonlinear Equations (p.341)

We have learned the distinction between linear and nonlinear algebraic equations in Section 4.1.
There are numerous occasions that engineers are requested to solve nonlinear equations such as
the equation for the solution tf of the following nonlinear equation in Example 8.9 on page 270:

.

We reported a solution of tf=0.7 in Equation (10.2) by a “short cut” solution method, and also tf= 0.862 by
a more accurate solution method such as the Newton- Raphson method described in Section 10.3.2.

(10.2)

There are a number of numerical methods available to solve nonlinear equations such as in Equation (10.2);
what we will introduce here in the book are the following two methods that are readily available by using
digital computers:

10.3.1 Solution using Microsoft Excel software (Example 10.1) (p.342):

In this method, we will first express the equation in the
form of f(x)=0 as shown in Figure 10.1. For example, we
will express Equation (10.3) in Example 10.1 from the
form of x4-2x3+x2-3x=-3 into the form: x4-2x3+x2-3x+3=0,
in which we will get the function f(x) = x4-2x3+x2-3x+3.
The roots “x” would lie in the range between x=xi and xi+1,
with which the values of f(xi) and f(xi+1) bearing different
positive or negative sign. The difference of (xi-1) and (xi),
or between xi+1 and xi is referred to be the increment of
x-value, or is expressed as ∆x.

Figure 10.1 Roots in Nonlinear Equation
f(x) = 0

6

10.3.1 Solution using Microsoft Excel software (Example 10.1) – Cont’d:
Example 10.1
Solve the nonlinear polynomial Equation in (10.3): x4-2x3+x2-3x+3=0

Solution:
We have Equation 10.3 expressed as f(x)=0 with f(x) = x4-2x3+x2-3x+3. We will
use Microsoft Excel software to evaluate the function f(x) with an increment of
the variable x, ∆x=0.5 beginning at x =0. The values of the function f(x) with xi
(i = 1,2,3,….,9) are shown in the Table in the right, and the plot of function f(x)

vs. variable x is depicted in Figure 10.2
:

i x f(x)
1 0 3.00

2 0.5 1.56

3 1.0 0

4 1.5 -0.94

5 2.0 +1.00

6 2.5 9.56

7 3.0 30.00

8 3.5 69/06

9 4.0 135.00

We notice from the computed values of f(x) with variable x in Figure 10.2 that there are two roots of the
equation in the ranges of (x=1.0 and 1.5) and the other root in the range of (x = 1.5 and 2.0) because the
sign changes of the function f(x) cross these two ranges of x variable. The first root of x =1 is obvious
because it resulted in f(x) = 0. The search of the second root with computations of the function f(x) with
smaller increment of x between x = 1.5 and x=2.0 indicated an approximate root at x = 1.8 as illustrated in
the plot of the results in Figure 10.2.

Figure 10.2

7

10.3.2 The Newton-Raphson Method – a popular method for solving nonlinear equations (p.342)

This method offers rapid convergence to the roots of many nonlinear equations from the initial
estimated roots.

Figure 10.3 illustrates the principle of Newton/Raphson’s method
in solving nonlinear equations.

The user needs to estimate a root at x = xi for the equation f(x) = 0,
from which he (she) may compute the function f(xi) and at the same
time the slope of the curve generated by the function f(x). This slope
may be expressed f’(xi), as expressed in the following equation:.

1

0)(
'

ii

i
i xx

xf
xf (10.4)

which leads to the following expression for the next estimated root at x = xi+1 to be:

 i

i
ii xf

xf
xx

'1 (10.5)

Figure 10.3 Newton-Raphson Method

One would readily notice from Figure 10.3 that the computed approximated next root xi+1 is much
closer to the real root (shown in filled circle) than the previously estimated value at xi.

8

10.3.2 The Newton-Raphson Method-Cont’d

Example 10.2 (p.343)

Use the Newton-Raphson’s method to find the roots of the following nonlinear polynomial equation:
f(x) = x4-2x3+x2-3x+3=0 (a)

Solution:
We will express the first order derivative of f(x) in Equation (a) that represent the slope of the curve
as required by Equation (10.4): (b) 3264' 23 xxxxf

Substituting f(xi) and f’(xi) into Equation (10.5) for the Newton-Raphson method, we will have the
following expression for finding the estimate roots begin with x = xi:

 32616

3324
' 23

234

1

iii

iiii
i

i

i
ii xxx

xxxxx
xf
xfxx

Thus by estimating the first root at x = x1 = 0.5 with i = 1,
we will have the next estimated x value at x2 with i = i+1
by using Equation (c) as:

(c)

03226.2
35.025.065.016

35.035.05.025.045.0 23

234

2

x

Attempt
number (i)

xi Computed
xi+1

Notes

1 0.5 1.0208 Estimate of first root
2 1.0208 0.9998
3 0.9998 1.0010 Converges to first

root

4 4.0 3.1818 Estimate of second
root

5 3.1818 2.4655
6 2.4655 2.1247
7 2.1247 1.9382
8 1.9382 1.8723 Begins to converge

to root
9 1.8723 1.8638
10 1.8638 1.8637 Converges to

second root

By following the same procedure, we will find the
convergence of the x-values to the root of Equation.(a).
The table on the right shows the attempts made to find
the first two roots

We will notice from this table that it only took 3
attempts to find the convergence to the first root at x
= 1.0. It, however, took 6 attempts to reach a
convergence to the second root at x = 1.8637 with an
initial estimate of the root at x = 4.

9

Example 10.3 (p.344)
Determine the locate the mark line for the content volume of
500 milliliter in a measuring cup with its dimensions shown in
the right of Figure 10.4 (p.345).:

10.3.2 The Newton-Raphson Method-Cont’d

Solution:
We assume the mark on the measuring cup for 500 milliliter (mL) is
situated at L as indicated in Figure 10.4. We thus need to determine
the value of L, so that the volume of the measuring cup with the content at the height L to be 500 mL.

The volume of a solid of revolution of a given length may be determined
by Equations (2.16) or (2.17) (pp. 43-44). The profile of the measuring
cup in Figure 10.4 is represented by a function x(y) = 0.16y + 3.75 in an
x-y coordinate system shown in the right diagram.

We will use Equation (2.17) to determine the volume of the content of
the measuring cup with a content level L by the following expreession:

 LLLdyydyyxV
LL

15.44884.10268.075.316.0 23
2

0

2

0

Since the volume of the measuring cup with the content level L is 500 mL or 500 cm3, we will have the
following equation for the unknown quantity L: LLL 15.44884.10268.0500 23 or in an alternative form of:

072.1865639.16473.70 23 LLL (a)

We recognize that Equation (a) is a nonlinear cubic equation, and one of the roots of this equation will
be the length L, which is the solution of this example.

We will use the Newton/Raphson method to solve the cubic equation in Equation (a).

Figure 10.4

10

10.3.2 The Newton-Raphson Method-Cont’d

Let us substitute the unknown L in Equation (a) with usual unknown of nonlinear equations
by x. The solution we will seek will be of Equation (b) instead. We will thus have the equation:

 72.1865639.16473.70 23 xxxxf (b)

and its derivative:

 39.16476.1403' 2 xxxf (c)

We will estimate the root of Equation (a) to be L = x1 = 4.0 (i = 1), and using Equation (10.5) for the
next estimate root to be:

 818.8
79.2257

36.108784
4'
44

' 1

1
12

f
f

xf
xf

xx

We found the subsequent estimation of the roots of Equation (c) rapidly converging to the following values

17.8
47.3120

2022818.83 x 15.8
3287.2996

5825.5617.84 xand

The last estimated root x4 = 8.15 which is close to the solution x = 8.1566 obtained from an online
software: Wolfram/Alpha Widgets (www.wolframalpha.com/widgets/view.jsp?id).

We may thus conclude that the mark line of 500 mL for the measuring cup in Figure 10.4 is
located at the length L = 8.15 cm from the bottom of the cup.

11

10.3.2 The Newton-Raphson Method-Cont’d

Example 10.4 (p.346)

In Example 8.9 in Chapter 8 (P.268), we derived the an equation to describe a mass that is attached to
a spring that would break when its elongation reached 0.03 m during resonant vibration of the spring-
mass system. We need to determine the time tf at which the spring breaks from Equation (a):

(a)

Solution:
We will use the Newton-Raphson’s method to solve the unknown quantity tf in Equation (a) by first
assuming a solution on tf = 0.75. We made this assumed solution based on a crude approximated value
of tf = 0.7 in Example 8.9.
Again, let us replace the unknown quantity tf in Equation (a) by conventional unknown
symbol x in the following alternative form:

003.010sin
200

110cos
20

05.0

 xxx

(b)

 03.010sin
200

110cos
20

05.0

 xxxxfwith (c)

and the derivative: xxxf 10sin5.005.0' (d)

Thus, the estimated root xi+1 after the previously estimated root xi may be computed by using the
expression in Equation (10.5), as will be shown in the next slide.

12

10.3.2 The Newton-Raphson Method-Cont’d

003.010sin
200

110cos
20

05.0

 xxxSolution x from the equation: (a)

We will begin the solution process with an initial estimate of the root of Equation (b) to be x1 =
0.75, which leads to the following subsequent approximate root x2 by Equation (10.5):

 869979.075.010sin75.05.005.0

/03.0200/75.010sin()75.010cos(20/75.005.075.0
75.0'
75.075.0

' 1

1
12

f
f

xf
xfxx

Result of the above computation with x2 = 0.869979 is presented in Trial No. 1 in the following table.

Trial No. Assigned xi f(x) f'(x) xi+1 % Difference

1 0.75 -0.036576 0.30486 0.869979 16

2 0.8 -0.019961 0.346275 0.857644 7.21

3 0.85 -0.003432 0.299433 0.86146 1.35

4 0.9 0.0085058 0.164847 0.848402 -5.73312

5 0.855 -0.001959 0.289694 0.861762 0.790885

6 0.857 -0.001384 0.28555 0.861846 0.565415

7 0.86 0.005367 0.279071 0.861923 0.223604

8 0.863 0.0002905 0.27228 0.861933 -0.12361

We observe that better results lied in the range of: Trial Nos.. 3-4 and 7-8 where the % difference
crossed the +ve to –ve numbers in the last column in the above diagram. Rapid convergences to
accurate solutions emerged with this method.

13

10.4 Numerical Integration Methods (p.347)

Definite integration of functions over specific intervals of variables that define the functions is a frequent
requirement in engineering analysis.

Some of the practical applications of integration are presented in Section 2.3 in Chapter 2.(p.38)

Exact evaluation of many definite integrals can be found in handbooks [Zwillinger 2003] but many
others with functions to be integrated are so complicated that analytical solutions for these integrals are
not possible. Numerical methods provide viable ways for such evaluation.

In this section, we will present three numerical integration methods:
(1) the trapezoidal rule,
(2) the Simpson’s one-third rule, and
(3) the Gaussian quadrature.

The first two methods require given functions in the integrand of the definite integrals.
The last method, the “Gaussian quadrature” will automatically define optimal locations on which the
integrations are performed. It is a popular numerical integration method in advanced numerical analyses,
such as the finite element method presented in the subsequent chapter.

We will focus our effort on refreshing the principles that are relevant to the development of algorithms of
these particular numerical integration methods but not on their proofs.

14

We have learned from Section 2.2.6 (p.36) that the value of a
definite integral of a function y(x) is equal to the area under the
curve produced by this function between the upper and lower
limits variables of the function as illustrated in Figure 10.6.

10.4.1 The trapezoidal rule for numerical integration (p.348)

Mathematically, the integral of function y(x) can be
expressed as:

 AAreadxxyI b

a

x

x
 Figure 10.6

The value of the integral of a function may thus be determined by computing the area covered by
the function between the two specified limits.
For example, the value of the function y(x) in Figure 10.7
may be approximated by the sum of the 3 plane trapezoids
with areas A1, A2 and A3, with the values of:

h
yy

AhyyAh
yy

A

222

32
3

21
2

10
1

The sum of A1, A2 and A3 is equal to:

 3210

32211
321

22
2

222
)(3

0

yyyyh

h
yy

h
yy

h
yy

dxxyAAA
x

x

o

(10.7)

in which h is the assigned increment of variable x, and y0, y1, y2 and y3 are the values of the
function evaluated at x0, x1, x2 and x3 respectively.

(10.6)

Figure 10.7

15

10.4.1 The trapezoidal rule for numerical integration – Cont’d

Example 10.5 (p.349)
Use the trapezoidal rule to evaluate the integral dxxyb

a

x

x .
in which the function 3216 xxxy

with xa = 0.5 and xb = 3.5 and assigned increment h = 1.0

Solution:

We will demonstrate the use of trapezoidal rule for numerical integration by plotting the function

y(x) verses x as shown in the Figure 10.8:

The value of the integral that we need to

determine is: dxxxI
5.3

5.0

3216

By using the trapezoidal rule with the three

trapezoidal illustrated in Figure 10.8, we may

evaluate the integral I by using the expression

in Equation (10.7) as:

 92.1804.2511.76248.76225.31
2
122

2
16 321

5.3

5.0

32 xxyyyyhdxxxI o

The above numerical integration resulted with I=180.92 with increment h=1.0 is actually less than the value
I=191.45 that one would obtain from “exact integration of the same function from an integration table
In a handbook. This discrepancy in results should not be a surprise, as a usual rule of thumb in
using numerical approximation method with the “accuracy of the result” closely related to the size
of increment h used in the approximations. We will demonstrate such rule in the following description.

Figure 10.8

16

10.4.1 The trapezoidal rule for numerical integration with multiple variable increments–
Cont’d (p.350)

y(x)

Figure 10.9 Integral of function y(x) with multiple trapezoids

The approximate value of the integral of
function y(x) in Figure 10.9 is equal to the
sum of all the trapezoids in the figure by the
following equation derived from the same
principle as in the foregoing case with three
trapezoidal:

 nn

n

x

x

yyyyyyh

AAAAdxxyI b

a

13210

1321

2........................222
2

...........

(10.8)

where h is the size of the variable increment along the x-coordinate in the numerical integration,
as shown in Figure 10.9.

17

10.4.1 The trapezoidal rule for numerical integration – Cont’d

Example 10.6 (p.350)

Evaluate the same integral in Example 10.5 but with a reduced increment h = 0.5.

The value of the integral that we need to determine is: dxxxdxxyI
5.3

5.0

325.3

5.0
16

 3216 xxxy with the function

The area covered by the function between x=0
and x=3.5 is approximated by what is shown in
Figure 10.10.

Figure 10.10 Integration of a function y(x) with 6 trapezoids

n xn yn-1

1 0.5 31.25
2 1.0 58.09
3 1.5 76.48
4 2.0 83.18
5 2.5 76.11
6 3.0 55.56
7 3.5 25.42

We will first determine the function values
y(x) at x = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5,
as shown in the following table:

This table also shows the function values, y1, y2, y3, y4, y5
and y6 required in the computation of the areas of the five
trapezoids in Figure 10.10. We may use Eq.(10.8) to
compute the sum of the areas of the five trapezoids to be:

 88.18842.2556.55211.76218.83248.76209.58225.31
2
5.0

 xxxxxI
We obtained the value of 188.88 for the same integral I with h = 0.5 is much closer to the analytical value of
191.45 than what we obtained with I=180 with h = 1.0 in Example 10.5, which demonstrates the fact that the
smaller increment h, leads to more accurate results using numerical methods.

18

10.4.2 Numerical Integration by Sampson’s One-Third Rule (p.352)

We have learned that we may evaluate an integral by
summing the plane areas under the curve representing the
function (the integrand) in the integral between two limits
of the variable in the integration, as illustrated in Figure
10.11(a):
We notice from this figure that the area under the function
y(x) is made up by 3 straight edges and the arc AB (not a
straight line). Figure 10.11(a)

We use the trapezoidal method to evaluate the integral

by approximating the area under the function y(x) between xa and xb
by a trapezoid as illustrated in Figure 10.11(b) with a straight edge in
dotted line, instead of an arc AB.
One would not hesitate to recognize the discrepancy in results from
using the trapezoidal approximation method using trapezoids, instead of using the arc AB for the area.

Figure 10.11 (b)

The Simpson rule, in particular, the “Simpson one-third rule.” differs from the
trapezoidal method by assuming a parabolic function y(x) = ax2 + bx + c
connecting adjacent points A and B on the curve representing the function y(x)
as shown in Figure 10.11(c). This parabolic function with constant coefficients
a,b and c to be determined by the Sampson one-third rule will not only result in
faster convergence to results but also offers much accurate results
in numerical integrations.

Figure 10.11 (c)

19

10.4.2 Numerical Integration using Sampson’s One-Third Rule – Cont’d
Math formulation of Sampson One-third Rule for numerical integration (p.353):

Figure 10.11(c)

By referring to the diagram in Figure 10.11(c), in which the
function in the integrand is: y(x) = ax2 + bx + c , we will have
the function evaluated at three points at x = -x, x=0 and x=+x:

y0 = a(-x)2 + b(-x) + c
y1 = c and y2 = a(x)2 + b(x) + c from which we may solve for:

 2102 2
2

1 yyy
x

a (10.9a)

c = y1 (10.9b)

The value of the integral of the function y(x) is equal to
the plane area A in Figure 10.11(c), or

 cxax

cxbxaxdxcbxaxdxxyxABxAREAI
x

x

x

x

x

x

62
3

23

2

23
2

By substituting the constant coefficients a and c in Equation (10.9a, b), together with ∆x = x in Figure
10.11(c) into the above expression, we will get the following relation for the Simpson one-third rule for
the integral I:

 210
2 4

3
yyyxdxcbxaxdxxyI

x

x

x

x

(10.10)

20

10.4.2 Numerical Integration by Sampson’s One-Third Rule – Cont’d

Example 10.7 (p.353)

Use Simpson one-third rule to find the numerical value of the integral in Example 10.5: I= dxxyb

a

x

x .
in which

 3216 xxxy

Solution:

We will use the three function values at x = 0.5, 2.0 and 3.5 to compute the value of the integral.
In such case, the increment of the integration variable is ∆x = 1.5. The integral is determined by the
expression in Equation (10.10).

We may obtain the function values y0, y1 and
y2 at x = 0.5, 2 and 3.5 from the Table in
Example 10.6 as:

y0 = 31.25, y1 = 83.18 and y2 = 25.42.
Integration of the function y(x) in this example5
can thus be determined by substituting the
values of y0, y1 and y2 and the increment of x,
∆x = 1.5 into Equation (10.10) to give:

 70.19442.2518.83425.31
3
5.116

4
3

5.3

5.0

325.3

5.0

210
2

xdxxxdxxy

yyyxdxcbxaxdxxyI
x

x

x

x

The “exact” solution of the above integral is 191.45 from a math handbook, from which we may have
the following comparison of results between the I = 188.88 by three trapezoidal in Example 10.5 and
the current solution I = 194.70 with three function values using the Simpson one-third rule.

21

10.4.2 Numerical Integration by Sampson’s One-Third Rule – Cont’d
(use multi-values of the function in integrand) (p.354)

One may use Equation (10.10) to evaluate integrals involving more than three function values
between two specified limits for the integration. We will use the same illustration in Figure 10.13
to derive the general expression for the Simpson one-third rule for numerical integration.

From which, we may thus express the general expression of Simpson one-third rule in the following
equation:

 nnn

x

x
yyyyyyyyhdxxyI b

a

 1243210 42.................2424
3 (10.11)

Figure 10.13

22

10.4.2 Numerical Integration by Sampson’s One-Third Rule – Cont’d

Example 10.8 (p.355)

Use the Simpson one-third rule in Equation (10.10) to evaluate the integral in Example 10.6:

 dxxxdxxyI
5.3

5.0

325.3

5.0
16

Solution:
Because the function y(x) in the integral that we need to evaluate is same as we had in Example 10.6, so we
will use the same table for the values of the present function with ∆x = 0.43 for the Sampson method.
The eight function values are presented in the following Table with these data points shown in Figure 10.14.

n 1 2 3 4 5 6 7 8
xn 0.5 0.93 1.36 1.79 2.21 2.64 3.07 3.5

y= y(xn) 31.25 54.69 72.3 81.89 81.85 71.54 51.68 25.41

We can thus use Equation (10.11) and evaluate the
integral I to be:

 45.18641.2568.51254.71485.81289.81430.72269.54425.31
3
43.0

242424
3

16 76543210

5.3

5.0

325.3

5.0

xxxxxx

yyyyyyyyxdxxxdxxyI

Figure 10.14

23

10.4.3 Numerical Integration by Gaussian Quadrature (p.356)

Most numerical methods for evaluating definite integrals require the users to select the sampling points and
evaluate the integral in terms of the discrete values of the function at these points.

These methods usually work well with well-behaved functions in the integral, but they do not offer any
guideline on the selection of the size of the increment (h or ∆x), in numerical computations, as in the
previous formulations.

There are times when engineers are expected to find numerical values of integrals involving functions that
have drastic change of shapes over the range of the required integrations. These methods do not yield good
approximation of the numerical values of the integral because of improper selection of sampling points.

Gaussian quadrature method has the advantage of offering the users with criteria on optimal sampling points
in numerical integration. It was established on the basis of strategically selected sampling points. The normal
form of a Gaussian integral can be expressed as:

 i

n

i
i aFHdFI

1

1

1
 (10.12)

where n is the total number of sampling points, Hi are the weighting coefficients corresponding to
sampling points located at : ia as given in Table 10.3 on P. 357.

The form of Gaussian integral shown in
Equation (10.12) is rarely seen in practice.
A transformation of coordinate is required
to convert the general form of integration
such as shown in Equation (10.6) on p.348
to the form shown in Equation (10.12), as
illustrated in Figure 10.15.

(a) (b)

Figure 10.15 Transform of coordinates

24

10.4.3 Numerical Integration by Gaussian Quadrature – Cont’d on formulation (p.356)

The transformation of coordinates from y(x) in the x-coordinate to the function F(ξ) in the
coordinate ξ may be accomplished by using the following relationship:

 abab xxxxx
2
1

2
1 (10.13)

which leads to the following expression:

 dF
xx

dxxy abx

x

b

a

1

12
(10.14)

where abxb xxxxx
xyF

2
1

2
1

 and dxxxd ab

1

2
1

We will obtain the expression for the required evaluation of the integral in Equation (10.6)
using Gaussian quadrature by substituting the relationship in Equation (10.12) into the above
expression in Equation (10.14) in the following form:

 i

n

i
i

abx

x
aFH

xx
dxxyI b

a

12
(10.15)

25

10.4.3 Numerical Integration by Gaussian Quadrature – Cont’d

Example 10.9 (p.358)
Evaluate the following integral by using the Gaussian quadrature in Equation (10.14).

0
cos dxxI (a)

Solution:

We have the function y(x) = cosx over the integration limits xa = 0 and xb = π. The transformation of
coordinates makes use of the relationship

22

x from Equation (10.13), from which we get:

Also, from Equation (10.14) with the use of the trigonometric relationships such as:

2
sin

22
coscos Fxxy

 sin
2

coscos
2

sin

 and

We may arrive at the following expression for integrating I in Equation (a) using Gaussian quadrature:

 i

n

i
i aHdddxxI

2
sin

22
sin

222
sincos

1

1

1

1

10

(b)

Let us take, for example, 3 sampling points, i.e., n = 3 from Table 10.3 on P.357 with:
a1 = 0 a2 = +0.77459 a3 = -0.77459

H1 = 0.88888 H2 = 0.55555 H3 = 0.55555
Substituting the above numbers into Equation (b) will lead to the solution:

 02167.1sin55555.02167.1sin55555.0
2

77459.0
2

sin55555.077459.0
2

sin55555.00sin88888.0
2

I

26

10.4.3 Numerical Integration by Gaussian Quadrature – Cont’d

Example 10.11 (p.360)

Evaluate the following integral in Example 10.8 using Gaussian quadrature method

 dxxxdxxyI
5.3

5.0

325.3

5.0
16

We notice the function y(x) in the integral in Equation (a) is identical to what we had in previous Examples
10.5 (p.349), 6 (p.350) and 8 (p.355).

(a)
Solution:

We will first derive the expression of the function F(ξ) for the function y(x) in Equation (a) from the
integration limits of 0.5 and 3.5 to the limit -1 and +1, as required in Gaussian quadrature.

The transformation of coordinate systems as illustrated in Figure 10.15 begins with the transformation of
variable from x to ξ using the relationship in Equation (10.13), leading to the following relationship
between the variables x and ξ as shown below:

 25.1
2
1

2
1

 abab xxxxx

The integral in Equation (a) in the y(x) vs.x coordinates can thus be transformed to the F(ξ) vs. ξ
coordinates by using Equation (10.14), yielding the following expression:

dxy

dFxxdxxxdxxyI

x

ab

25.1

1

1

1

1

5.3

5.0

325.3

5.0

2
5.05.3

2
16

(d)

We may thus evaluate the integral with the expression in Equation (d) as:

 ddI

1

1

32321

1
12625.225.15.125.11625.15.1

(c)

27

 ddI

1

1

32321

1
12625.225.15.125.11625.15.1

10.4.3 Numerical Integration by Gaussian Quadrature – Cont’d on solution of Example 10.11

We have arrived at the following integral:

from which we have the function in the form of Gaussian quadrature:

 32 12625.225.1 F
We may thus use Equation (10.12) for the value of the integral I in Equation (a) to be:

 i

n

i
i aFHI

1

5.1

(e)

(f)

Let us choose 3 sampling points for the integral in Equation (f), i.e., n= 3 in Equation (e) with ai and
Hi (i = 1, 2, 3) from Table 10.3, as tabulated below:

i ai Hi

1 0 0.88888
2 0.77459 0.55555
3 -0.77459 0.55555

By substituting the above numbers into Equation (f), we will have the value of the integral I as:

I = 1.5 [H1F(0) + H2F(0.7746) + H3F(-0.7746)] (g)
We may evaluate the function values at ai using Equation (e) as:

F(0) = 83.1384, F(0.77459) = 46.4981, and F(-0.77459) = 50.1454 (10.16)
Substituting these function values into Equation (e) will result the integral I in Equation (a) as:

 3684.1911454.505555.04981.465555.01384.838888.05.1

16
5.3

5.0

325.3

5.0

xxx

dxxxdxxyI

This value of the integral in Equation (a) obtained by Gaussian quadrature with three sampling
points is remarkably close to the exact value of 191.45 obtained from a math handbook.

28

10.5 Numerical Methods for Solving Differential Equations (p.361)

Numerical solution methods for differential equations relating to two types of engineering analysis problems:
(1) The “initial value” problems, and (2) the “boundary value” problems.

Numerical solution methods will offer the users with solution of the differential equations at
“solution points”, but not everywhere within the variable domains.

Solution of initial value problems involves a starting point with the variable of the function, say at x0, which is a
specific value of variable x for solution y (x). With the solution given at this starting point, one may find the
solutions at x= xo+h, xo+2h, xo+3h,…………., xo+nh, in which h is the selected “step size” in the numerical
computations and n is an integer number of steps used in the analysis.

Numerical solution to boundary value problems is more complicated, in which function values are often specified
at certain variables, and there are restrictions on how the selected steps for solution values may be restricted by
the specified values at these variable points.

The number of steps n in the computation can be as large as what takes to cover the entire range of the
variable in the analysis, or as small as selected by the users. Like all numerical solution methods, smaller
solution steps would offer more accurate results as in general cases.
There are many numerical solution methods available for engineers to solve differential equations. We
will present: (1) The finite difference method to illustrate the principles of converting “differential
equations” to “difference equations”, and (2) the Runge-Kutta method - a popular method by engineers..

29

10.5.1 The principle of finite difference method (p.362)

The essence of the “finite difference method” (FDM) is to convert the “derivatives” in the differential equations
into “difference”, so that differential equation may be expressed in algebraic equations in terms of the converted
format of “differences.”

With regard to Figure 10.16, we have a continuous function
f(x) that has values fi-1, fi and fi+1 at the variables xi-1, xi and
xi+1 respectively. We may also designate the three function
values at the three x-values to be:

fi = f(x)

f i+1 = f(x + Δx), and

f i-1 = f(x –Δx)

(10.16a)

(10.16b)

(10.16c)

The derivative of the function f(x) at Point A with x = xi in Figure
10.16 is graphically represented by the tangent line A”-A’
to the curve representing function f(x) at point A. Mathematically, we may express the derivative as given in
Equation (2.9) on p.34, or in the form:

Figure 10.16 Function Evaluated at 3 positions

x
f

x
f

dx
xdf im

ox

)(

(10.17)

where ∆x is the increment of variable x used in the above derivative.

One may observe an important relation from Equation (10.17) that the derivative may be approximated by the
finite increments of ∆f corresponding to ∆x as indicated in Equation (10.18).

x
f

dx
xdf

)((10.18)

We thus realize that derivatives of continuous functions may be approximated by adopting finite, but
not the infinitesimally small increments of variable x. Formulation with such approximation is called
“finite difference”.

30

10.5.2 The 3 Basic Finite-Difference Schemes (p.363)

1) The forward difference scheme:

In this “forward difference scheme,” the rate of change
of the function f(x) with respect to the variable x is
accounted for between the function value at the current
value at x = xi and the value of the same function at the
next step, i.e. x i+1 = x + ∆x in the triangle ∆A’Aa’ in
Figure 10.16.
The mathematical expression of this scheme is shown
in Equation (10.19).

h
ff

x
ff

xx
ff

x
f

dx
xdff iiii

ii

ii

xxxx
i

ii

11

1

1)(
(10.19)

Figure 10.16 Function Evaluated at 3 positions

in which h = ∆x is the “step size.”

The derivative of the function f(x) at other values of the variable x in the positive direction can be
expressed following Equation (10.19) to be:

.,23
2

12
1

etc
h

ff
f

h
ff

f

ii
i

ii
i

(10.20)

The second order derivative of the function f(x) at x can be derived by the following procedure:

2
12

112

11

0

2

2

)(1

h
fff

h
h

ff
h

ff

h
ff

x
ff

x

ff
im

dx
xdf

dx
df

iii

iiii

iiiiix

x
xx

i
i

i

(10.21)

31

10.5.2 The 3 Basic Finite-Difference Schemes – Cont’d

2) The backward difference scheme:

Figure 10.16 Function Evaluated at 3 positions

In this difference scheme, the rate of the change of the function
with respect to the variable x is accounted for between the current
value at x = xi and the step backward, i.e. x i-1 = x - ∆x in the
triangle ∆AA’’a” in Figure 10.16. The mathematical expression of
this scheme is given in Equation (10.22):

h
ff

x
ff

x
xxfxfim

x
ff

imf iiii

x

ii

xi
11

0

1

0

)()(

 (10.22)

Following a similar procedure in the forward difference scheme,
we may express the second order derivative in the following form:

2
212 2

h
fff

f iii
i

 (10.23)

3) The Central difference scheme:
The rate of change of function f(x) in this finite difference scheme accounts the function values between
the previous step at (x-∆x) and the step ahead, i.e. (x+∆x). The triangle involved in this difference scheme
is ∆A’A”a’’’ in Figure 10.16. We have the first order derivative expressed in Equation (10.24).

h
ff

xx
ff

f ii

ii

ii
i 2

11

11

11

 (10.24)
Equation (10.24) involves a larger step of the size “2h” in the first order derivative. These “coarse”
steps will compromise the accuracy of the values of the derivatives. A better central difference scheme
is to account for the “half” steps in both directions. We may improve the step size in Eq.(10.25):

 22 2

1
2
1

xxffandxxff
ii

(10.25)

leading to:
h

ff
f

ii

i
2
1

2
1

 (10.26)

32

10.5.2 The 3 Basic Finite-Difference Schemes – Cont’d

Example 10.12 (p.364)

Solve the following differential equation using the forward finite difference scheme.

0)()(
2

2
 tx

td
txd

(a)
with specified initial conditions:

1)0(x
0)0(x

(b)
(c)

Solution:
Let us use the forward difference scheme following Equations (10.19) and (10.21) with the finite
difference scheme:

t
txttx

dt
tdx

)()()(

(d)

and 22

2

)(
)()(2)2()(

t
txttxttx

d
tx

t
d

 (e)

Substituting Equation (e) into Equation (a) results in the following finite difference form of the differential
equation:

0)(
)(

)()(2)2(
2

 tx

t
txttxttx

Upon re-arranging the terms in the above equation, we get the following “recurrence relation” for the
approximate solution of Equation (a):

0)(])(1[)(2)2(2 txtttxttx (f)

x(0) = 1
x(t) = x(0) = 1

with

and

(g)
(h)

33

10.5.2 The 3 Basic Finite-Difference Schemes – Cont’d

Example 10.12 – Cont’d
0)(])(1[)(2)2(2 txtttxttx (f)

x(0) = 1
x(t) = x(0) = 1

with
and

(g)
(h)

The finite difference equation:

We are now ready to solve for x(t) in Equation (a) using the finite difference operator by repeated
use of the recurrence relation in Equation (f).
The solution of x(t) will be on the incremental steps of t chosen by the user. By referring to the
initial conditions in Equations (g) and (h) we may get the x(t) at all subsequent steps
Choice of solution steps, t:

Let us assume that a step size t = 0.05 is chosen for the solution.
The corresponding solution becomes, from Equation (f) with t = 0.05:

x(t+0.1) – 2x(t+0.05) + 1.0025x(t) = 0 (j)
and from Equation (h): x(0.05) = 1

x(0.1) – 2x(0.05) + 1.0025x(0) = 0

Because x(0) is the initial condition in Equation (g), so the above relation yields

x(0+0.1) – 2x(0+0.05) = -1.0025

But since x(0.05) = 1 from Equation (h), we have:

x(0.1) = -1.0025 + 2x(0.05) = 0.9975 (k)

34

We may now move to the next time point by letting t = t + t = 0 + 0.05 = 0.05 and having t = 0.05
substituted into Equation (f) and get:

x(0.05+0.1) – 2x(0.05 + 0.05) + 1.0025x(0.05) = 0,
or x(0.15)- 2x(0.1) + 1.0025x(0.05) = 0 (m)

Since we have already obtained x(0.1) = 0.9975 from Equation (k) and x(0.05) = 1 from Equation
(h), we will thus have another solution point from Equation (m):

x(0.15) = 2x0.9975 – 1.0025x1 = 0.9925 (p)

10.5.2 The 3 Basic Finite-Difference Schemes – Cont’d

Example 10.12 – Cont’d
0)(])(1[)(2)2(2 txtttxttx (f)

x(0) = 1
x(t) = x(0) = 1

with
and

(g)
(h)

The finite difference equation:

We will move to the next time point that is t = t + t = 0.05 + 0.05 = 0.1. Substituting t=0.1 onto
Equation (f), we get:

x(0.1 + 0.1) – 2x(0.1 + 0.05) + 1.0025x(0.1) = 0

or

x(0.2) – 2x(0.15) + 1.0025x(0.1) = 0
But with x(0.15) = 0.9925 from the last step in Equation (p) and x(0.1) = 0.9975 from Equation
(k), we will have:

x(0.2) = 2x0.9925 – 1.0025x0.9975 = 0.9850 (q)

35

10.5.2 The 3 Basic Finite-Difference Schemes – Cont’d

Example 10.12 – Cont’d

Thus, by following the same procedure as illustrated above, we may obtain solution of Equation (a) at all
time points with an increment t = 0.05.

0)()(
2

2
 tx

td
txd (a)

1)0(x
0)0(x

(b)
(c)with given conditions:

The results obtained from the forward difference scheme are summarized in the Table below, with
the comparison to the exact solution of x(t) = cost:

Variable, t Solution by the finite difference
method

Exact solution % Error

0 1 1 0
0.05 1 0.999996 0
0.10 0.9975 0.9950041 0.25
0.15 0.9925 0.98877 0.38
0.20 0.9850 0.980066 0.503

One will observe from the above-tabulated values that the percentage of error of the
results obtained from the finite difference method increases with the increase of variable
t, and prove that the accuracy of the finite difference method improves with smaller increments of the
variables, e.g. the t in the present example

36

10.5.4 A Popular Numerical Solution Method of Solving Differential Equations
-The Runge-Kutta Methods (p.367)

There are a number of numerical solution methods available for solving differential equations
relating to both types of initial value and boundary value problems. Readers can find detailed
description of these methods from special books on this subject from the references cited in
this book. What we will present in this Section are the two popular numerical solution methods
on both the 2nd-order and the 4th-order Runge-Kutta methods.

Both these Runge-Kutta methods are integrative methods for approximation of solutions of
differential equations. This method with several versions were developed around 1900s by
German mathematicians C. Runge and M.W. Kutta.

The essence of the Runge-Katta methods involves the use of numerical integrating the function
in differential equations by using a trial step at mid-point of an interval, e.g., within a step ∆x or
h by using numerical integration techniques such as trapezoidal or Simpson rules as presented
in Section10.4. The numerical integrations would allow the cancellation of low-order error terms
for more accurate solutions.

As in the preceding sections on numerical methods for engineering analysis, we will present
the formulations of the Runge-Kutta methods in this section without proof these formulations
mathematically. We will also use commercially available software by the name of MatLAB to
sole a selected differential equation with plot of its solution in Case 3 in Appendix 4 on page
478.

37

10.5.4.1 The Second-order Runge-Kutta Method (p.367)

This is the simplest form of the Runge-Katta method with the formulations for the solution of first order
differential equation in the following form:

y’(x) = f(x,y) (10.30)

with a specified solution point corresponding to one specific condition for the Equation (10.30). The
solution points of this differential equation can be expressed as:

 3
21 hOkyy ii (10.31)

where O(h3) is the order of error of the step h3, and

 12 2

1,
2
1 kyhxhk ii

 ii yxfhk ,1

(10.32a)

(10.32b)

Example 10.13 (p.368)

Use the second order Runge-Kutta method shown in Equations (10.31) and (10. 32a,b) to solve the
following first order ordinary differential equation similar to that in Example 7.4 on p.203:

 22 xy
dx

xdy (a)

with a given condition y(0) =2.

We will solve Equation (a) with condition y(0) = 2 in Example 7.4 with an exact solution of
y(x) = 1 + e -2x.

where

38

10.5.4.1 The Second-order Runge-Kutta Method – cont’d
Example 10.13 – Cont’d

Use the second order Runge-Kutta method shown in Equations (10.31) and (10. 32a,b) to solve the
following first order ordinary differential equation similar to that in Example 7.4:

 22 xy
dx

xdy (a)

with a given condition y(0) =2.

Solution:

Let us first re-arrange Equation (a) in the following form:
 yxfxyxy

dx
xdy ,22' from which we have: f(x,y) = 2 – 2y (b)

and the specified solution point: y(0) =y0 = 2

We are now ready to determine the first solution point using Equation (10.30) to (10.32a,b):

Step 1: With i = 0 and selected increment h = 0.1:

201 kyy

 2.02221.0221.0 01 xyk

18.0
2

2.02221.0
2
1,

2
1.0 1002

 kyhxfk

We thus have our first solution point:
y1 = y0 + k2 = 2 – 0.18 = 1.82 (the exact solution is: y1 = 1.8187)

39

10.5.4.1 The Second-order Runge-Kutta Method – cont’d
Example 10.13 – Cont’d

Use the second order Runge-Kutta method shown in Equations (10.31) and (10. 32a,b) to solve the
following first order ordinary differential equation similar to that in Example 7.4:

 22 xy
dx

xdy (a)

with a given condition y(0) =2.

We may move the solution point forward to: i = 1, h = 0.1 with y1 = 1.82:

We should have the solution point: y2 = y1 + k2 as in Equation (10.31), with:
 164.082.1221.0221.0, 1111 xyyxfhk

1804.0164.0
2
182.1221.0

2
1,

2
1

1112

 kyhxfhk

Hence the second solution point,y2 is:

y2 = y1 +k2 = 1.82 – 0.1804 = 1.6396 (exact solution is: y2 = 1.67)

We observe that the error of numerical solution accumulates from 0.07% for y1 to 1.82%
for y2.

40

10.5.4.2 The 4th – Order Runge-Kutta Method (p.369)

This is the most popular version of the Runge-Kutta method for solving differential equation of initial value
problems. Formulation of this order solution method is similar to that of the second order method.

The differential equation is similar to that shown in Equation (10.30) with :y’(x) = f(x,y) but with the solution

point given by the following formula:

 43211 22
6

kkkkhyy ii (10.33)

 ii yxfk ,1

2
,

2
1

2
hkyhxfk ii

2
,

2
2

3
hkyhxfk ii

 hkyhxfk ii 34 ,

where (10.34a)

(10.34b)

(10.34c)

(10.34d)

Example 10.14 (p.369)

Use the Runge-Kutta 4th order method to solve the same differential equation in Example 10.13 but
only for the second solution point y2.

Solution:
The differential equation we will solve is:

 22 xy
dx

xdy with given condition of y(0) = 2.

Example 10.13 already solve the first solution point with y1 = 1.82 with a chosen step size of h
= 0.1. We are required to find the next solution point at y2 with i = 1 using the same step size
of h = 0.1.

41

10.5.4.2 The 4th – Order Runge-Kutta Method-Cont’d

Example 10.14 – cont’d

We need to translate the differential eqation into the form of the differential
equation using the Runge-Kutta solution method in the form of y’(x) = f(x,y) as shown in
Equation (10.30) with: f(x,y) = 2-2y (a)

Example 10.13 already solve the first solution point with y1 = 1.82 with a chosen step size of h
= 0.1. We are required to find the next solution point at y2 with i = 1 using the same step size
of h = 0.1.

 22 xy
dx

xdy

and y0 = 2

We may use the expression in Equation (10.33) to obtain solution point 2 for the differential
equation in Example 10.13 to be:

 432112 22
6
1.0 kkkkyy (b)

where k1, k2, k3 and k4 can be obtained by using the expressions in Equations (10.34a, b, c and
d) respectively:

 64.182.12222, 1111 xyyxk

Substituting the constants k1, k2, k3 and k4 in Equations (c,d,e,f) into Equation (b), resulting in:

(c)

(d)

(e)

(f)

We find the above solution y2 using the 4th order Runge-Katta method is remarkably close to the
exact solution of y2 = 1.67. This is a much more accurate result than what can be obtained by using
the 2nd order Runge-Kutta method as illustrated in Example 10.13.

42

10.5.4.3 Runge-Kutta Method for Higher Order Differential Equations (p.370)

● We have learned that Runge-Kutta method can solve differential equations often with remarkable
accuracy as demonstrated in Example 10.14.

● Unfortunately most textbooks only offer the application of this valuable method for solving first order
differential equations.

● Its application to solve higher order differential equations requires the conversion of higher order
differential equations to the first order-equivalent forms such as in Equation (10.30) on p. 367.

● The solution of the converted higher order differential equations can be obtained by using the
expressions such as given in Equation (10.33) for the 4th order Runge-Kutta formulation.

● We will present the following formulation to illustrate how the fourth order Runge-Kutta method can
be used to solve second order ordinary differential equations

We will first express the given second order ordinary differential equation in the form:
 ',,,,2

2

yyxf
dx

xdyyxf
dx

xyd

 (10.35)

Since the left-hand-side of Equation (10.35) may be expressed as:
dx

xdy' , we may convert the
second order differential equation in (10.35) into a first order differential equation in the form:

 xyyxf
dx

xdy ',,'

 xyyxFxy
dx

xdy ',,' with

(10.36a)

(10.36b)

43

10.5.4.3 Runge-Kutta Method for Higher Order Differential Equations – Cont’d

 xyyxf
dx

xdy ',,'

 xyyxFxy
dx

xdy ',,' with

(10.36a)

(10.36b)

We will present the converted 2nd order differential in Equation (10.35) in Equations (10.36a) and (10.36b) below:

Solution points yi+1 of these second order differential equations may be obtained by the following expressions
derived from the 4th order Runge-Kutta method:

 hFFFFyy ii 43211 22
6
1

 (10.37)

and its derivative: hffffyy ii 4321
'

1 22
6
1

 (10.38)

where h = the increment of the solution points in the x-coordinate.

The coefficients F1, F2, F3 and F4, and f1, f2, f3 and f4 in Equations (10.37) and (10.38) can be obtained by
the expressions given in the following table (Table 10.4) on p.371:

 '1 ,, iii yyxff

44

10.5.4.3 Runge-Kutta Method for Higher Order Differential Equations – Cont’d

Example 10.15 (p.371)

Use the 4th order Runge-Kutta method to solve the following second order differential equation

 242 2
2

2

 xxxy
dx

xdy
dx

xyd
(a)

with given conditions:
 00 00

yyxy
x

 00' '
0

0

yy
dx

xdy

x

(b1)
(b2)

Solution:
By comparing Equation (a) with Equation (10.35), we will obtain the following expression for the
function f(x,y,y’) in Equation (10.35):

f(x, y, y’) = (x2 - 4x + 2) – y + 2y’ (c)

with the specified conditions of y0 = 0 and y’(0) = 0 for our subsequent numerical solution of the
differential equation.

We will select 3 different step sizes: h = 0.2, 0.6 and 1.2 for the three case illustrations using by
following a procedure, starting with variable at x = 0.

45

We begin the numerical solution for Equation (a) by letting i = 0 in Equation (10.37) with x0 =
y0=y’0=0, and f(x,y,y’)=(x2-4x+2)-y+2y’ for the first solution point at x = h = 0.2:

10.5.4.3 Runge-Kutta Method for Higher Order Differential Equations – Cont’d

Example 10.15 - Cont’d

We will obtain the following coefficients by using the expressions for the coefficients given in Table 10.4:

)(0'
01 conditiongivenayF

 2020200224, '
000

2
0

'
0,01 xyyxxyyxff o

2.02.02
2
10

2
1

1
'
02 xhfyF

 201.02.001.2
2
10

2
1

2
'
03 xhfyF

46

We begin the numerical solution for Equation (a) by letting i = 0 in Equation (10.37) with x0 =
y0=y’0=0, and f(x,y,y’)=(x2-4x+2)-y+2y’ for the first solution point at x = h = 0.2:

10.5.4.3 Runge-Kutta Method for Higher Order Differential Equations – Cont’d

Example 10.15 - Cont’d

We are ready to find the numerical solution of the differential equation in Equation (a) by
substituting the values of F1, F2, F3 and F4 into Equation (10.37), and obtain a solution point y1 with
i = 0 and h = 0.2:

(d)

The exact solution of Equation is y(x) = x2, which yields an exact solution of y(0.2) = 0.04. The
numerical solution in Equation (d) has a .42% error from the exact solution.

We will also use Equation (10.38) to approximate the value of the first order derivation y’(0.2) as:

47

We have thus obtained the numerical solution for Equation (a) as computed in the previous slide, in
which we let i = 0 in Equation (10.37) with x0 = y0=y’0=0, and f(x,y,y’)=(x2-4x+2)-y+2y’ for the first
solution point at x = h = 0.2.

10.5.4.3 Runge-Kutta Method for Higher Order Differential Equations – Cont’d

Example 10.15 - Cont’d

One may follow the same procedure
to obtain the solution of Equation (a)
at point: x = x + h with h =0.1, 0.4,0.6
and 1.2 to see the difference in the
solutions, and also the % of errors in
these solutions with different h-values.
Table 10.5 shows these solutions and
the % errors in the solutions using
different h-values.
Like all other numerical solution
methods for solving differential
equations, the accuracy, or error of the
approximated solutions depends largely
on the step size h chosen by the users.

We have demonstrated the effects of
the chosen increment size h for the
same differential equation in Equation
(a) but with other two h-values with h =
0.6 and 1.2 in two separate cases. The
results of these two cases, together with
the cases of h = 0.2, 0.1 and 0.4 are
summarized in the same Table 10.5.

Case Number: 12 21,2 32 41 51

X0 0 0 0 0 0
h 0.2 0.1 0.4 0.6 1.2
F1 0 0 0 0 0
F2 0.2 0.1 0.4 0.6 1.2
F3 0.201 0.100125 0.408 0.627 1.416
F4 0.3984 1.999537 0.7904 1.1784 2.4864
f1 2 2 2 2 2
f2 2.01 2.0025 2.04 2.09 2.36
f3 1.992 1.99775 1.976 1.964 2.072
f4 1.8078 1.999537 1.9446 1.9406 1.936

y’(x) 0.3937 0.200052 0.79844 1.20486 2.56
Approx.
y(xo+h)

0.040013 0.010000 0.16042 0.36324 1.5436

Exact y(xo+h) 0.04 0.01 0.16 0.36 1.44
%Error: y(h) 0.033 0.0042 0.2667 0.9 7.2
%Error: y’(h) 0.005 0.000313 0.195

NOTE: 1Case runs with solutions by MatLAB in Case 1 in Appendix 4 of the book (p. 478).
2Cases presented in Table 10.5 on p.373

Table 10.5 Enhanced Solutions of a Differential Equation by
Runge-Kutta Method with 5 incremental sizes

48

The solution with incremental size such as h=0.2 obtained by manual operations using Runge-
Kutta method in Example 10.15 appeared tedious and time-consuming.

The same differential equation with pecified conditions was solved by a commercial software
package MatLAB with the input/output information included in Case 3 of Appendix 4 (P.478).

The results obtained by using this software were remarkably accurate with solution at the same
three points, i.e.: at x=0.2, x=0.6 and x = 0=1.2 with h=0.2 are plotted in the graphic output as
shown in Figure 10.17 by the MatLAB software with I/O indicated in Case 3 of Appendix 4 (p.
483).

10.5.4.3 Runge-Kutta Method for Higher Order Differential Equations – Cont’d

Solving a Higher Order Differential Equation using Runge-Kutta method and online
MatLAB software

Figure 10.17 Graphic Output of the Solution of a 2nd Order Differential Equation
Using MatLAB Sotware Package

49

10.5.4.3 Runge-Kutta Method for Higher Order Differential Equations – Cont’d

Example 10.16 (p.373)
Use the 4th order Runge-Kutta method to solve the last solution of the function x(t) at t = 0.2 in the second
order differential equation in Example 10.12 (p.364), in which the same 2nd order differential equation was
solved by using a forward difference scheme. This example demonstrates the fact that Runge-Kutta
method can be related to the finite difference method of solving differential equations.

Solution:

The differential equation to be solved is:

 0)(
2

2

 tx
dt

txd (a)
with specified conditions:

x(0) = 1

and

Since we do not have the term)(' tx in Equation (a), we will not need to evaluate F1, F2, F3 and F4 in Table
10.5. We will use the same step size h = 0.05 as was in Example 10.12.
By following the procedures adopted in the Example 10.15, we express Equation (a) in the folloiwng form:

 tx
dt

tdx 'where

and x0 = 0.9925 (the solution obtained in Example (10.12) and 14944.0'
0 x

50

We will use the 4th order Runge-Katta method as shown in Equations (10.33) and (10.38) and
the coefficients given in Table 10.4 (p.371) to obtain the solution at x(0.2) as follows. Let i=0,
h=0.05, x0=0.9925 and x0’ = -0.14944 for the solution at t =0.2, or

10.5.4.3 Runge-Kutta Method for Higher Order Differential Equations – Cont’d

Example 10.16 (p.373)-Cont’d

 2
321

'
001 6

1)2.0(hfffhxxxx (b)

We will evaluate the coefficients f1, f2, f3 and f4 from Table 10.4 as follows:

 14944.0,, 0
'
0,001 xxxtff

 153176.0
2

05.014944.014944.0
2
1

1
'
02

xhfxf

 153694.0
2

05.0153176.014944.0
2
1

2
'
03

xhfxf

15710347.005.0153694.014944.03
'
04 xhfxf

According to Equation (10.38), we have the solution

 9848.005.0153694.0153176.014944.0
6
105.014944.09925.0

6
12.0

2

2
321

'
001

x

hfffhxxxx

This numerical solution has an error of 0.48% from the exact solution, and it is more accurate
than that obtained from the simple forward difference scheme in Example 10.12.

51

10.6 Introduction to Commercial Software Packages for Numerical Analysis (p.375)

We have demonstrated in this chapter that accurate solutions of almost all numerical
solution methods require small increment step sizes the variable of the function for
solutions. Smaller increments means more computational efforts and advanced digital
computers often are the necessary tools to achieve accurate solutions..

Consequently, sophisticated computer packages such as the two popular commercially
available packages with trade names of “Mathematica” and “MatLAB” have proven to be
valuable tools for engineers in their engineering analyses.

In this section, we will briefly highlight these two numerical analysis packages, in
particular, their capabilities in solving various engineering problems. Readers are referred
to several excellent references cited in the book for more detailed descriptions of these
packages, as well as effective use of a well documented commercial software package
named MatLAB in Appendix 4 of the book.

52

10.6.1 Introduction to Mathematica (p.375)

Mathematica is a computational software program based on symbolic mathematics. It is
used in many scientific, engineering, mathematical and computing fields. The programming
languages used in Mathematica is the Wolfram Language by Stephen Wolfram and C, C++
and Java. This software package has been in the marketplace since June 1988. Following are
noticeable capabilities for handling engineering analysis:
1) Determine roots of polynomial equations of cubic or higher orders.
2) Integrate and differentiate complicated expressions.
3) Solve linear and nonlinear differential equations
4) Elementary and special mathematical function libraries
5) Matrix and data manipulation tools
6) Numeric and symbolic tools for discrete and continuous calculus

It can also solve the following common analytical engineering problems involving:
1) The determination of Laplace and Fourier transforms of functions.
2) Generating graphics in two- and three-dimensions.
3) With simplify trigonometric and algebraic expressions.

53

Mathematica also has the following features that are of great values in advanced engineering analyses:

● Support for complex numbers, arbitrary precision, interval arithmetic and symbolic computation

• Solvers for systems of equations, Diophantine equations, ODEs, PDEs, etc.

 Multivariate statistics libraries including fitting, hypothesis testing, and probability and expectation
calculations on over 140 distributions.

 Calculations and simulations on random processes and queues

 Computational geometry in 2D, 3D and higher dimensions

 Finite element analysis including 2D and 3D adaptive mesh generation

 Constrained and unconstrained local and global optimization

 Toolkit for adding user interfaces to calculations and applications

 Tools for 2D and 3D image processing and morphological processing, including image recognition

 Tools for visualizing and analyzing directed and undirected graphs

 Tools for combinatorics problems

 Data mining tools such as cluster analysis, sequence alignment and pattern matching

10.6.1 Introduction to Mathematica (p.375)-Cont’d

54

10.6.1 Introduction to Mathematica (p.375)-Cont’d

 Group theory and symbolic tensor functions

 Libraries for signal processing including wavelet analysis on sounds, images and data

 Linear and non-linear control systems libraries

 Continuous and discrete integral transforms

 Import and export filters for data, images, video, sound,CAD, GIS,] document and biomedical
formats

 Database collection for mathematical, scientific, and socio-economic information and access to
Wolfram alpha data and computations

 Technical word processing including formula editing and automated report generating

 Tools for connecting to DLL, SOL, Java, NET, C++, Fortran, CUDA, OpenCL and http based
systems

 Tools for parallel programming

 Mathematica language in notebook when connected to the Internet
The last of the above itemized features is of particular value to engineers. For example, we were required to find the root of
the following cubical equation in Example 10.3: 072.1865639.16473.70 23 LLL
A meaningful root of this equation found by using the Newton/Raphson method was L = 8.15 as shown in Example 10.3.
A similar solution of L = 8.1566 were obtained by the solution method offered at an Internet at the website Wolfram/Alpha
Widgets (www.wolframalpha.com/widgets/view.jsp?id) with user’s input of the coefficients of this equation. It offered an
instant solution and with an excellent user interface feature.

55

10.6.2 Introduction to MatLAB (p.376)
MATLAB is an acronym of “matrix laboratory.” This numerical analysis package was designed by Cleve Molar in
the late 1970s with an initial release to the public in 1984. The latest version, Version 8.6 was released in September
2015.

MATLAB provides a multi-paradigm numerical omputing environment and 4th generation programming language, a
proprietary programming language developed by MathWorks. It allows matrix manipulations, plotting of functions
and data, implementation of algorithms, creation of user interfaces that include interfacing with programs written in
other languages, including ,C++, Java, Fortran and Python. It is a popular numerical analysis package mainly
because of it has graphic and graphical user interfacing programming capability.
Like Mathematica, MATLAB is capable of handling the following common problems in engineering analysis [Malek-
Madani 1998]:

1) Find roots of polynomials, sum series, and determine limits of sequences,
2) Symbolically integrate and differentiate complicated expressions,
3) Plot graphics in two and three dimensions,
4) Simplify trigonometric and algebraic expressions,
5) Solve linear and nonlinear differential equations, and
6) Determine the Laplace transform of functions,
7) Plus a variety of other mathematical operations.

Operation of MatLAB requires user to input simple program for the solution of the problems. These program
usually consists of three “commands:” 1) the “command window” for the user to enter commands and data,
2) the “graphics window” to display the results in plots and graphs, and 3) the “edit window,” to create and
edit the M-files, which provide alternative ways of performing operations that could expand MATLAB’s
problem-solving capabilities
Detailed instructions on using MATLAB for solving a variety of mathematical problems are available in
MATLAB Primer published by the Mathworks, Inc.(www.mathworks.com) and two excellent references
[Malek-Madani 1998, Chapra 2012].

56

10.6.2 Introduction to MatLAB (p.376)-Cont’d

Appendix 4 of this book will present the input/output (I/O) procedures for three cases of
engineering analysis using the MatLAB software package. These cases include:

Case 1: Graphic solution of the amplitudes with “beats” offered by the solution in Equation (8.40)
for the near-resonant vibration of a metal stamping machine,

Case 2: The numerical solution with graphic expressions of the amplitudes and mode shapes of a
thin flexible rectangular pad subjected to transverse vibration as presented in Equation
(9.76).

Case 3: The solution with graphic expression of a non-homogeneous second order differential
equation.

These cases will usher the readers to use this valuable commercially available numerical analysis
software package MatLAB in solving complicated engineering analysis problems.

